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Cognitive processing biases, such as increased attention to threat,
are gaining recognition as causal factors in anxiety. Yet, little is
known about the anatomical pathway by which threat biases cogni-
tion and how genetic factors might influence the integrity of this
pathway, and thus, behavior. For 40 normative adults, we recon-
structed the entire amygdalo-prefrontal white matter tract (uncinate
fasciculus) using diffusion tensor weighted MRI and probabilistic
tractography to test the hypothesis that greater fiber integrity corre-
lates with greater nonconscious attention bias to threat as
measured by a backward masked dot-probe task. We used path
analysis to investigate the relationship between brain-derived nerve
growth factor genotype, uncinate fasciculus integrity, and attention
bias behavior. Greater structural integrity of the amygdalo-prefrontal
tract correlates with facilitated attention bias to nonconscious threat.
Genetic variability associated with brain-derived nerve growth factor
appears to influence the microstructure of this pathway and, in turn,
attention bias to nonconscious threat. These results suggest that the
integrity of amygdalo-prefrontal projections underlie nonconscious at-
tention bias to threat and mediate genetic influence on attention bias
behavior. Prefrontal cognition and attentional processing in high bias
individuals appear to be heavily influenced by nonconscious threat
signals relayed via the uncinate fasciculus.
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Introduction

Humans have evolved to rapidly respond to signals of poten-
tial threat (Ohman et al. 2001), even when these signals are
nonconsciously processed (Beaver et al. 2005; Carlson, Fee
et al. 2009). This response includes an automatic allocation of
attentional resources to the location of potential threat, which
serves to prioritize visual cortical processing within this reti-
notopic location (Carlson et al. 2011). Although affective pro-
cessing biases are an adaptive aspect of the human fear
response (Ohman et al. 2001), vulnerability to anxiety is
linked to excessive attention bias to nonconscious threat (Fox
2002; Mogg and Bradley 2002). Furthermore, individual
differences in nonconscious attention bias to threat prospec-
tively predict cortisol release during laboratory-based and
real-world stress (Fox et al. 2010). Critically, attention bias to
threat is not only correlated with anxiety, but appears to play
a casual role in its development (MacLeod et al. 2002). Given
that attention bias is strongly and causally associated with
stress reactivity and anxiety vulnerability, it is important to
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understand the anatomical pathway by which threat biases
cognition and how structural variability in this pathway may
relate to variability in attention bias behavior.

Models of cognitive processing biases claim that such
biases only occur when multiple stimulus representations
compete for attention (Mathews and Mackintosh 1998;
Mathews and MacLeod 2002). Under this model, the anterior
cingulate cortex (ACC) is thought to serve as a conflict
monitor and resolver, while the amygdala is thought to non-
consciously evaluate threat and “bias” the monitoring system
(i.e., ACO) in favor of threat. Similarly, Gray and McNaugh-
ton’s (2000) model states that fear-related or “active avoid-
ance” type behaviors such as increased attention to threat are
mediated by the amygdala—ACC system, while during states of
uncertainty and anxiety septo-hippocampal activity accompa-
nies the amygdala response to threat. Consistent with these
models, accumulating evidence suggests that the amygdala
detects and evaluates nonconscious representations of visual
threat (Morris et al. 1998; Whalen et al. 1998; Liddell et al.
2005), which are likely relayed via the pulvinar nucleus of the
thalamus and the superior colliculus (Morris et al. 1999, 2001;
Liddell et al. 2005). Furthermore, amygdala reactivity to non-
conscious threat is elevated in a variety of negative
affect-related dispositions such as anxiety (Etkin et al. 2004),
depression (Sheline et al. 2001), anger (Carlson et al. 2010),
and post-traumatic stress disorder (Rauch et al. 2000; Armony
et al. 2005). More recent research has linked the facilitation of
spatial attention by nonconscious threats to an amygdala—ACC
network (Carlson, Reinke et al. 2009), in which amygdala re-
activity is positively coupled with ACC activity. Additionally,
amygdala activation during nonconscious attention bias to
threat is elevated among anxious individuals (Monk et al.
2008). Anatomically, attention bias to threat is correlated with
greater ACC gray matter volumes (Carlson, Beacher et al.
2012). Within the prefrontal cortex, the ACC is one of the
most densely and reciprocally connected with the amygdala
(Porrino et al. 1981; Amaral and Price 1984) and the uncinate
fasciculus is the primary white matter tract connecting these
structures. Thus, the uncinate fasciculus directly connects the
“threat evaluating” amygdala to the “conflict resolving” ACC,
and we would therefore expect that the integrity of this tract
should positively correlated with attention bias behavior. Yet,
this relationship has not been tested.

The extent to which genetic factors influence the integrity
of the uncinate fasciculus pathway and, in turn, attention
bias behavior is currently unknown. Growth factors such as



brain-derived neurotrophic factor (BDNF) are critical in regu-
lating neural development, connectivity, and plasticity (Poo
2001; Martinowich and Lu 2008) and, for precisely this
reason, genetic variability affecting these growth factors may
contribute to variability in white matter integrity across indi-
viduals. Here, we turn our attention to a single nucleotide
polymorphism in the BDNF gene, which results in the substi-
tution of valine (Val) to methionine (Met) at codon 66—the
BDNF Val66Met polymorphism (Egan et al. 2003). The fre-
quency of the Met/Met (4.5%, 15.9%), Met/Val (27.1%,
50.3%), and Val/Val (68.4%, 33%) genotypes has been shown
to differ across ethnic backgrounds (United States [a primarily
Caucasian sample] and Japan, respectively; Shimizu et al.
2004). The substitution of Met for Val reduces a number of
factors associated with synaptic plasticity and memory such as
memory performance, hippocampal activity, synaptic activity,
BDNF dendritic expression, and activity-dependent secretion
of BDNF (Egan et al. 2003). Additionally, Met/Met mice mani-
fest less neuronal BDNF secretion and display increased fear-
related behaviors such as freezing (Chen et al. 2006). Similar
to the mouse model, Met/Met humans are at increased risk
for mood disorders (Montag, Basten et al. 2010) and Met+
(i.e., Met/Met and Met/Val) adults display heightened rumina-
tion (Hilt et al. 2007; Beevers et al. 2009) and disrupted fear
conditioning (Hajcak et al. 2009). Additionally, the Met-BDNF
genetic variant has been linked to increased depression in
women across ethnic backgrounds (Verhagen et al. 2010). In
human functional neuroimaging research, Met+ individuals
show a hyperactive amygdala response to emotional stimuli
(Montag et al. 2008)—an effect exaggerated in anxious indi-
viduals (Lau et al. 2010). Human structural neuroimaging re-
search indicates that Met allele carriers show smaller
amygdala, hippocampus, caudate, and dorsolateral prefrontal
volumes, compared with Val/Val individuals (Pezawas et al.
2004). However, in terms of white matter, greater fiber integ-
rity has been linked to the Met-BDNF genetic variant in a
number of the major fiber tracts (Chiang et al. 2011) and in par-
ticular the uncinate fasciculus (Tost et al. 2013). Given the
prevalent impacts of BDNF Val66Met on neural structure includ-
ing white matter (Chiang et al. 2011; Tost et al. 2013) and fear-
related behavior (Chen et al. 2006), we hypothesized that Met+
individuals would display greater uncinate fasciculus fiber in-
tegrity and increased attentional bias to nonconscious threat.

The primary goal of this study was to test the relationship
between amygdalo-prefrontal tract integrity and attention bias
behavior. Based on the models (Mathews and Mackintosh
1998; McNaughton and Gray 2000; Mathews and MacLeod
2002) and research (Carlson, Reinke et al. 2009; Carlson,
Beacher et al. 2012) outlined above, we hypothesized that
greater amygdalo-prefrontal tract integrity predicts greater
levels of nonconscious attention bias to threat. To test this
hypothesis, we used a recently designed global tractography
method (Yendiki et al. 2011) to reconstruct the entire unci-
nate fasciculus tract and measured nonconscious attention
bias to threat with a backward masked fearful face
dot-probe task. Further, we examined the role of the BDNF
Val66Met polymorphism on this brain-behavior relationship
(Martinowich and Lu 2008; Montag et al. 2008; Montag,
Basten et al. 2010; Tost et al. 2013). Specifically, we used
path analysis to test the hypothesis that differences in BDNF
genotype would influence fiber integrity and in turn atten-
tion bias behavior.
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Materials and Methods

Participants

Forty (16 females) consenting adults 19-25 years old participated.
Our sample contained 18 Caucasians, 3 African Americans, 15 Asians,
0 Hispanic, and 4 individuals of other ethnicities (Ethnicity was
neither associated with attention bias to threat [Fs35=1.82, P=0.16]
nor uncinate fasciculus integrity, Fs 36=1.27, P=0.3.). Thirty-five re-
ported being right handed. Potential participants were screened for
metal in their bodies. The Institutional Review Board of Stony Brook
University approved this study. Participants were compensated for
their time.

Dot-Probe Task

The task was performed in a small testing room outside the scanner.
Stimuli were presented on a 60-Hz PC monitor and stimulus presen-
tation was controlled by E-Prime (Psychology Software Tools, Pitts-
burg, PA, USA). Facial stimuli were from a standardized database
(Gur et al. 2002). Four individual identities (2 males) of fearful and
neutral grayscale faces were used for the initial (i.e., masked) faces
and a different female identity with an open-mouthed happy facial
expression was used as a mask. As depicted in Figure 1la, trials
started with a white fixation cue (+) centered on a black background
for 1000 ms. Afterward, 2 faces were then simultaneously presented
to the left and right of fixation (33 ms). Each face subtended ~5 x 7°
of visual angle. Faces were separated by 14°. To limit the potential
influence of perceptual inconsistencies, these initial faces were in-
stantly masked with an open-mouth happy face (100 ms) offset by 1°
on the vertical axis (Carlson and Reinke 2008). A target dot immedi-
ately followed in either the location of the left or the right face and
remained on the screen until a response was made. Participants re-
sponded to the location of the dot using the numeric pad on a key-
board: pressing the “1” key with their right index finger for left-sided
targets and the “2” key with their right middle finger for right-sided
targets. The fixation cue remained in the center of the screen through-
out the entirety of each trial. Participants were instructed to always
fixate on this cue.

Trials used to calculate attention bias scores contained one fearful
and one neutral face. For half of these trials, the target dot was pre-
sented in a spatially congruent location to the fearful face, while for
the other half the target dot was spatially incongruent (i.e., appeared
behind the neutral face). The facilitation of spatial attention by back-
ward masked fearful faces is marked by faster reaction times on con-
gruent compared with incongruent trials. Thus, attention bias scores
were calculated as the mean difference between congruent and incon-
gruent reaction times. More negative values are indicative of an
attention-related reduction of reaction time on congruent compared
with incongruent trials. The task contained 40 congruent and 40 in-
congruent trials equally presented in each visual field plus 40 neutral-
neutral trials.

Participants also completed a task designed to assess awareness of
the backward masked faces. Participants were instructed that each
trial would contain 2 sets of faces presented in rapid succession and
that they should identify the facial expressions of the first set of faces.
Stimulus presentation for this task was identical to the dot-probe task
with the exception that following the masked faces participants were
prompted to use a keyboard to indicate whether they saw a fearful
face on the left, a fearful face on the right, or 2 neutral faces. The task
included 60 trials: 20 of each type.

Genotyping Procedure

Participants were genotyped for Val66Met BNDF polymorphism (Par-
ticipants were also genotyped for the 5-HTTLPR. Given the very small
number of longalong, individuals [7 = 4] and the homogenous effects
of short-short [#=19] and short-long [#=17] individuals, we were
unable to explore the effects of the 5-HTTLPR. However, it should be
noted that BDNF and 5-HTTLPR genotypes are believed to have inter-
acting influences on brain morphometry (Pezawas et al. 2008) and
the interpretation of the current BDNF genotype effects should con-
sider our large portion of S-allele carriers.). The genotyping
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Figure 1. (a) An example of a congruent trial. Attention bias is calculated as the difference between masked fear congruent and incongruent dot-probes, where greater
attention to threat is reflected by a more negative value. (b) Posterior distribution of the reconstructed uncinate fasciculus averaged across 40 subjects and thresholded at 20%
maximum. The uncinate fasciculus (red) connects the amygdala (brown) to ventral prefrontal and anterior cingulate (green) cortices. (c) Scatter plots depicting correlations
between attention bias and left uncinate fasciculus fractional anisotropy and (d) axial diffusivity.

procedures for BDNF have previously been described (Hajcak et al.
2009). Briefly, we used the QuickExtract DNA Extraction Solution
(Epicentre Technologies, Madison, WI, USA) to extract DNA from
buccal cells, and a high-resolution melt analysis for genotype analysis.
Our sample contained 18 Met carriers (Met/Met=6 & Met/Val=12)
and 22 homozygous Val/Val individuals. Using the Hardy-Weinberg
equilibrium calculator (Rodriguez et al. 2009) our BDNF genotype dis-
tribution did not deviate from the expected distribution (x*(1) =3.27,
P>0.05).

Image Acquisition

Participants were scanned at the Stony Brook University Social, Cog-
nitive, and Affective Neuroscience center with a 3-Tesla Siemens Trio
whole-body magnetic resonance image scanner. DTIs were collected
using the following parameters: repetition time (TR) =5500 ms, echo
time (TE) =93 ms, field of view (FOV) =220 x 220 mm, matrix =120 x
220x 220, voxel size=1.7x1.7x3.0mm, echo planar imaging
factor = 128, slices = 40, slice thickness =3 mm, Bandwidth = 1396 Hz/
pixel, GRAPPA acceleration factor=2. The series included 2 initial
images acquired without diffusion weighting and with diffusion
weighting along 40 noncollinear directions (b=800sm 2. T;.
-weighted images were acquired in the same session with the follow-
ing  parameters: TR=1900ms, TE=2.53, flip angle=9°,
FOV =176 x 250 x 250 mm, matrix =176 x 256 x 256, and voxel size =
1x0.98 x 0.98 mm.

Image Processing

We corrected eddy current distortions for each subject, and registered
individual images without diffusion weighting to 7 images. We used
FDT (FMRIB software library’s Diffusion Toolbox 2.0) for DTI prepro-
cessing. We performed cortical parcellation and subcortical segmenta-
tion from individual’s T;-weighted image employing an automated
cortical reconstruction and volumetric segmentation tool, Freesurfer
5.1 (http://surfer.nmr.mgh.harvard.edu/).

Global Tractography: TRACULA

We performed a recently developed global tractography method,
TRActs Constrained bv UnderLying Anatomy (TRACULA; Yendiki
et al. 2011), to reconstruct our a priori white matter tract of interest,
the uncinate fasciculus. Global tractography parameterizes a connec-
tion between 2 regions at a global level, instead of tracking through a
local orientation field. This global approach has several advantages
over local tractography in that it eschews local uncertainty issues due
to noise or partial volume effects, and it can increase the sensitivity
and robustness of the tractography solutions by informing tractogra-
phy process of a known connection between 2 regions (Jbabdi et al.
2007). Furthermore, TRACULA minimizes bias due to the need of
manual intervention, for example, to set arbitrary angle or length for
tractography or to draw anatomical boundaries for tracts, which
potentially lead to spurious results. TRACULA uses a Bayesian frame-
work for global tractography with anatomical priors (Yendiki et al.
2011). Prior information on the surrounding anatomy of the pathway
are derived from training datasets of 33 healthy adults, of which
major pathways including the uncinate fasciculus are identified by a
neuroanatomist (for detailed manual labeling procedures, see
Yendiki et al. 2011 ). Notably in TRACULA, 2 end regions for the trac-
tography algorithm are obtained by intersection of the pre-labeled
tract atlas, and the brain areas of a test subject, parcellated and seg-
mented in Freesurfer. Based on this prior knowledge, posterior distri-
butions of tracts are estimated via a Markov Chain Monte Carlo
algorithm (see individual tracts in Fig. 2). Statistics on standard diffu-
sion measures (i.e., fractional anisotropy [FA], axial diffusivity [AD],
radial diffusivity, and mean diffusivity) are then extracted from the
estimated posterior pathway distribution.

DTI Metrics and Statistical Analysis

Based on earlier work (Carlson, Reinke et al. 2009; Carlson, Beacher
et al. 2012), we tested the directional hypothesis that greater attention
bias would be associated with greater uncinate fasciculus fiber
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Figure 2. Variability map of the reconstructed UF The voxelwise coefficients of
variance map (shown in red-yellow) of the reconstructed uncinate fasciculus showed
shared inmost region and highly variable outmost region. A probabilistic uncinate
fasciculus atlas (shown in blue; JHU White-Matter Tractography Atlas; http:/fsl.fmrib.
ox.ac.uk/fsl/fslview/) was overlapped. The voxelwise CV map was derived from
posterior distribution map in each subject.

integrity. Based on the reports that the Met-BDNF variant of Val66Met
single nucleotide polymorphism (SNP) is associated with greater
white matter integrity (Chiang et al. 2011) and increased fear-related
behaviors (Chen et al. 2006), we tested the directional hypotheses
that Met allele carriers would show greater fiber integrity in the unci-
nate fasciculus and greater attention to threat. Our primary measure
of interest was FA, which is an indicator of fiber integrity and degree
of myelination (Le Bihan 2003). Radial and axial diffusivity (RD and
AD), which, respectively, measure the degree of myelination and
axonal integrity (Song et al. 2003), were also assessed. FA was posi-
tively correlated with AD (left: »=0.62, P=0.00004 right: »=0.52,
P=0.0003), but negatively with radial diffusivity (left: »=-0.90,
P<0.00001; right: »=-0.90, P<0.00001). Thus, we tested an inverse
relationship with radial diffusivity. Given our directional tests, we
used 1-tailed P-values.

We diagnosed potential outliers for every test at a threshold of
Cook’s distance of 4/n (i.e., 0.1). When potential outliers were de-
tected, robust linear regression was used. Robust regression in Stata
12 used a stepwise weighting estimation (i.e., Huber weighting and
biweights) and a biweight tuning constant of 6 was used (Goodall
1983).

Path Analysis
We combined path analysis and a model comparison method in
AMOS 18 (SPSS, Inc.) to test the serial relationship of BDNF SNP, FA
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of the left uncinate fasciculus, and attention bias. We chose path
analysis because it can effectively differentiate direct and indirect
effects, and with aid of structural equation model functionality (e.g.,
bootstrap model comparison method), it provides a useful approach
for hypothesis testing. We first built the most intuitive model (Model
1), which assumed serial effects of BDNF genotype onto FA and FA
onto attention bias. We then constructed 5 variations and compared
model fit to choose the best one. Confounding variables in the model
included age, sex, and ethnicity for the effects of BDNF on the FA in
addition to awareness level and information processing speed for at-
tention bias.

Given our sample size of forty and the numbers of parameters in-
cluded in the model, our degrees of freedom (df) were only 18 for
the intuitive model. Thus, a goodness of model fit could be driven by
only a few outliers. Our data indeed contained one potential outlier
whose attention bias index is more than 2 SD + average (Fig. 1¢), and
this outlier has a significant impact on the goodness of model fit: in
case of the intuitive model (Model 1), y*/df changed from 1.108
(without the outlier) to 0.696 (with the outlier). We thus excluded
this outlier from the path analyses. No outliers were found in FA. For
model comparison, we employed a bootstrapping method following
the Linhart and Zucchini’s approach (Linhart and Zucchini 1986) in
addition to comparison of standard goodness of fit statistics. The
bootstrapping approach involves 4 steps. First, we generated boot-
strap samples considering the original data as the population for the
purpose of sampling. Second, the 5 models were fitted to every
10000 bootstrap samples using the maximum likelihood function.
For each iteration, the discrepancy between each bootstrap sample
and the bootstrap population was calculated. Third, the average dis-
crepancy across bootstrap samples for each model was calculated.
Fourth, the best model among the 5 was selected based on the mean
discrepancy. We additionally considered standard goodness of fit
measures, such as Akaike’s Information Criterion (AIC), the root
mean square error of approximation (RMSEA), and the comparative
fit index (CFI). Cutoff criteria for RMSEA (<0.06) and CFI (0.95) were
considered (Hu and Bentler 1999).

Results

Bebavior

Reaction time data were restricted to correct responses occur-
ring within 150-750 ms (Carlson and Reinke 2008), which re-
sulted in 2.5% of the data being discarded for incorrect
responses and another 2% discarded for premature or
delayed responses. Thus, 95.5% of the reaction time data were
used for analysis. Overall, participants responded faster on
congruent compared with incongruent trials (mean congruent-
incongruent difference=—-6.20 ms, SD=17.50, #o=-2.24,
P=0.02) suggesting that at the group-level, attention was cap-
tured by backward masked fearful faces (It should be noted
that age [r=-0.16, P=0.34], gender [f33=0.07], handedness
[t36=0.97], and ethnicity [Fs35=1.82, P=0.16] were not
associated with attention bias scores.). For correlation ana-
lyses, “Attention Bias” scores were calculated as the
congruent-incongruent difference, where more negative
values are indicative of faster responses on congruent trials
and thus, greater attentional bias to threat. Participants’ per-
formance on a post-task assessment of awareness was at
chance (139 =0.82, P=0.21).

Reconstructed Uncinate Fasciculus

We reconstructed the uncinate fasciculus in each subject (Sup-
plementary Fig. 1). In order to quantify variability of the re-
constructed tracts, we examined voxelwise coefficients of
variance (Fig. 2). The tracts showed shared configuration in
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the inmost region (i.e., low coefficients of variance) and
highly variable configuration in the outmost region (i.e., high
coefficients of variance). Each posterior distribution of the un-
cinate fasciculus had on average 13 715 voxels (+495; mean
standard error [SEM]), and an average of 38.6% (+1.3; SEM) of
them were nonoverlapping with the probabilistic atlas of the
uncinate fasciculus (JHU White-Matter Tractography Atlas;
http://fsl.fmrib.ox.ac.uk/fsl/fslview/; Supplementary Table).
An average of 79.9% (£0.7; SEM) of the atlas was nonover-
lapped with the posterior distribution map. These results indi-
cate a high degree of uncinate fasciculus variability across
individuals and highlight the problem of solely using a stan-
dardized atlas for DTI analysis without consideration of this
large degree of individual variability.

Correlations with Attention Bias

As predicted, greater left uncinate fasciculus FA (rpara=
—0.36, P=0.01; Fig. 1¢) and AD (#pia=—0.35, P=0.02;
Fig. 1d) were correlated with greater attention bias to threat
with a trend observed for the right uncinate fasciculus (FA:
Tpartial = —0.20, P=0.11; AD: #pu4a=—0.25, P=0.07), after
controlling for participants’ level of awareness and speed of
information processing (Wiens 20006; Turken et al. 2008).
These effects were robust to potential outliers (FA:
b6 =—2.33, P=0.01; AD: t35=—1.67, P=0.053, robust linear
regression; see Materials and Methods section for outlier diag-
nosis). The overall effect was in an uncinate-fasciculus-
specific manner as we did not observe a correlation with the
mean FA of the entire brain (r=-0.07, P=0.32).
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Figure 3. The Met + BDNF variant (Met/Met and Met/Val) as compared to Val/Val,
resulted in greater fractional anisotropy (a) and axial diffusivity (b) in the left uncinate
fasciculus. Effects controlled for age, sex, and ethnicity. (c) Five regression models
containing BNDF Val66Met, FA of uncinate fasciculus, and attention bias were
compared. The best model selected based on multiple model fit criteria suggests
that BDNF Val66Met influences uncinate fasciculus integrity, which in turn influences
attention bias to threat. Bold arrows denote estimated direct effects. A dotted arrow
in the best model indicates an indirect effect. BDNF BDNF Val66Met polymorphism;
UF, fractional anisotropy of the left uncinate fasciculus. 'Significance of coefficients in
robust linear regression. *P < 0.05; *P = 0.066.

Impacts of BDNF SNP Variant on Fiber Integrity

and Attention Bias

We then explored a link between uncinate fasciculus fiber in-
tegrity and genetic factors. As predicted, we found a signifi-
cant effect of the Met allele (both Met/Val and Met/Met) on
FA (#35=-2.08, P=0.02, robust linear regression) and AD
(t35=—2.18, P=0.02) in the left uncinate fasciculus (Fig. 3a,
b). These effects controlled for ethnicity, sex, and age. We ob-
served a trend-level effect of Met-BDNF variant on attention
bias (P=0.13, robust linear regression) when controlling for
awareness and speed of information processing. Thus, the
results suggest that the Met-BDNF variant is associated with
greater uncinate fasciculus integrity, which is associated with
attention bias to threat. This may suggest a serial impact of
the genetic variant to white matter structure to attention bias
behavior.

To test such a relationship directly, we performed a path
analysis between the BDNF SNP, FA of the uncinate fasciculus
and attention bias. We built a model accounting for the serial
relationship and 4 alternatives, and compared them. Con-
founding variables were included (see Materials and Methods
section). As predicted, the model of the serial influences
showed the best goodness of model fit: lowest AIC (55.9) and
mean discrepancy of bootstrap samples versus population
(49.3), highest Comparative Fit Index (0.93), and root mean
square error of approximation (0.053) (Fig. 3¢, Table 1). In
this model, the total effect of BDNF SNP on FA was f=-0.32,
P=0.043 (Bias-corrected using Bootstrap estimation) and the
total effect of FA on attention bias was f=-0.37, P=0.03.
The indirect effect of the BDNF SNP on attention bias via FA
was =0.12, P=0.066). Overall, the model accounted for
35.3% of variance in the FA and 20.6% of AI variance
(squared multiple correlations). These results strongly
support the serial relationship of gene to white matter struc-
ture to behavior.

Discussion

We provide evidence linking uncinate fasciculus microstruc-
ture to elevated attention bias to nonconscious threat. The di-
rection of this correlation suggests that for hyperthreat
attentive individuals, the ACC and amygdala together play a
role in potentiating the nonconscious threat response. Our
results further suggest that the Met allele of the BDNF
Val66Met polymorphism elevates attention bias to threat
through its influence on amygdalo-prefrontal connectivity.

Table 1
Comparison of linear regression models

Model Df Xz/df Discrepancy ~ AIC CFI RMSEA  Squared multiple
of bootstrap correlations
samples and
population
Model 1 18 1.11*  49.3% 55.9* 0.93* 0.053*  UF 0.353; Al, 0.206
Model 2 18 132 530 598 079  0.092 UF, 0.353; Al, 0.101
Model 3 19 149 554 623 067 0113 UF, 0.216; Al, 0.101
Model 4 19 118 506 56.3  0.88  0.068 UF, 0.383; Al, 0.060
Model 5 19 128 517 584 081 0.086 UF 0.216; Al, 0.198
Independent 28 2.00 - 72.2 0.163
model

Note: *Indicating best goodness of model fit in each criterion. Al, attention bias; UF, FA of the
uncinate fasciculus.
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Amygdala-Prefrontal Integrity and Attention

Bias to Threat

Similar to the amygdala (Morris et al. 1998; Whalen et al.
1998; Liddell et al. 2005), the ACC is activated in response to
nonconscious threat signals (Liddell et al. 2005; Williams,
Liddell et al. 2006). Both the amygdala and ACC are hyperac-
tive in response to nonconscious threats in anxiety disorders
such as post-traumatic stress disorder (Bryant et al. 2008;
Kemp et al. 2009) and are positively coupled during noncon-
scious threat processing (Williams, Das et al. 2006). Given evi-
dence that the amygdala receives representations of
nonconscious threat through a subcortical route (Morris et al.
1999; Morris et al. 2001; Liddell et al. 2005), the logical flow
of information processing would be that the amygdala first
detects these nonconscious fear representations and then
relays this threat signal to the ACC via the uncinate fasciculus.
The existence of such forward projections is supported by
anatomical studies in monkeys (Porrino et al. 1981; Amaral
and Price 1984). The ACC is thought to contain cognitive
(dorsal) and affective (ventral) subdivisions (Bush et al.
2000), both of which appear to play a role in conflict monitor-
ing and resolution (Botvinick et al. 1999; Etkin et al. 2000).
We recently identified attention bias-related morphological
variability in an ACC region at the conjunction of the tra-
ditional cognitive and emotion subdivisions (Carlson, Beacher
et al. 2012). Greater attentional bias to threat was correlated
with greater gray matter volume. Taken together, the data
support the model purported by Mathews and Mackintosh
(1998). Consistent with this model, we speculate that noncon-
scious threat-related information, detected in the amygdala, is
relayed via the uncinate fasciculus to the ACC and during con-
ditions of conflict (i.e., 2 facial expressions competing for at-
tention), this threat signal “biases” the ACC to resolve conflict
by favoring threat (at least for high bias individuals). Further-
more, it appears that for high bias individuals, the integrity of
the fibers connecting the amygdala to the ACC are strength-
ened, which presumably results in a greater amygdala-driven
threat bias.

There is increasing focus on cognitive processing biases,
such as increased attention to threat, as causal factors in the
development and maintenance of anxiety disorders (MacLeod
et al. 2002). As such, attention bias modification (ABM) was
conceived as a treatment option where anxiety is alleviated
through a training regiment that reduces an individual’s atten-
tion bias to negative information. After a decade of ABM re-
search, it appears that this treatment option has an efficacy
comparable to selective serotonin reuptake inhibitors and
cognitive behavioral therapy (Hakamata et al. 2010).
Additional research suggests that training, on the order of
hours to weeks, in both motor and cognitive domains leads to
structural changes in gray and white matter observable in MRI
(Scholz et al. 2009). Given the current results and earlier
reports linking gray matter volume to attention bias behavior
(Carlson, Beacher et al. 2012), one direction for future
research would be to assess the impact of ABM treatment in
reorganizing the amygdalo-prefrontal system. We hypothesize
that greater treatment efficacy should coincide with a “repro-
gramming” of the underlying brain mechanisms. If this is
true, structural biomarkers such as amygdala-prefrontal integ-
rity may provide a definitive and stable measurement to tract
the recovery of anxiety following ABM treatment. Although
our initial evidence that neuroanatomical white matter

2254 Influence of the BDNF Genotype on Amygdalo . Carlson et al.

structure correlates with attention bias to threat shows
promise for measuring the efficacy of ABM treatment, further
research is needed. As we did not screen participants for
mental health status, it is particularly important that the
relationship between attentional bias and amygdala-prefrontal
integrity is studied in clinically anxious samples.

Attentional bias to threat is an important fear-related behav-
ior that has been linked to increased anxiety (Fox 2002;
Mathews and MacLeod 2002; Mogg and Bradley 2002).
However, fear and anxiety are not synonymous. Anxiety
refers to a prolonged state of worry characterized by uncer-
tainty in the risk assessment of potential (future) danger,
while fear refers to a brief “fight or flight” response to a
specific threat (Gray and McNaughton 2000; Sylvers et al.
2011). In Gray and McNaughton’s (2000) model, anxiety
arises from the activation of the septo-hippocampal “Behav-
ioral Inhibition System” in conjunction with the amygdala
threat response. With this distinction in mind, it is worth
noting that previous DTI studies on trait or group level
anxiety have produced mixed results in terms of the direction
of the relationship (for review, see Ayling et al. 2012).
Although a recent study with a large sample found that high
trait anxious males have greater structural integrity of the left
hemisphere uncinate fasciculus (Montag et al. 2012), a
majority of studies (Kim and Whalen 2009; Pacheco et al.
2009; Phan et al. 2009; McIntosh et al. 2012; Tromp et al.
2012) have reported lower fiber integrity (e.g., FA) of the un-
cinate fasciculus for high anxious individuals (or those at
genetic risk for anxiety; 5-HTTLPR short allele). Given that
anxiety is associated with the apprehension or worry about a
potentially threatening future event, we would expect this
response to be initiated by a top-down mechanism (i.e., pre-
frontal to amygdala). Alternatively, fear responses such as in-
creases in attention to threat are immediate bottom-up
stimulus-driven events (i.e., amygdala to prefrontal). Thus,
given that amygdalo-prefrontal communication is reciprocal
(Porrino et al. 1981; Amaral and Price 1984), it is likely that
fear-related behaviors are linked to heightened “bottom-up”
cognitive bias, whereas anxiety is linked to deficits in
“top-down” signals. Additionally, question-answer type
measures of anxiety, which are used in trait anxiety question-
naires and the structured clinical interview, are more likely to
tap into reflective higher order top-down mechanisms. Re-
gardless, it is likely that different aspects of fear and anxiety
are differentially influenced by amygdala-prefrontal communi-
cation, and it may therefore be more meaningful to relate vari-
ation in brain structure to specific symptom-relevant
behavioral measures, rather than broadly defined traits or dis-
orders. Thus, further DTI research on a variety of fear- and
anxiety-related behaviors is needed to better understand how
fiber integrity relates to different aspects of fear and anxiety.

Amygdala—Prefrontal Integrity and the BDNF
Polymorpbism

BDNF is associated with synaptic plasticity and Met/Met indi-
viduals are at increased risk for mood disorders (Martinowich
and Lu 2008; Montag, Basten et al. 2010). Here, we extend
these effects to attention bias to threat via uncinate fasciculus
tract integrity. Our results complement earlier research
suggesting that Met+ individuals have a hyperactive amygdala
response to emotional stimuli (Montag et al. 2008), especially



in anxious individuals (Lau et al. 2010), and are more likely to
display anxiety- and fear-related behaviors such as rumination
(Hilt et al. 2007; Beevers et al. 2009) and the generalization of
fear conditioning (Hajcak et al. 2009). Furthermore, our
results add to a growing body of research linking variability
in attentional bias to threat to an underlying genetic com-
ponent (Beevers et al. 2007; Osinsky et al. 2008; Fox et al.
2009; Elam et al. 2010; Kwang et al. 2010; Perez-Edgar et al.
2010; Carlson, Mujica-Parodi et al. 2012). Our results are par-
ticularly informative in that they suggest that the BDNF gene
first influences the integrity of the uncinate fasciculus and this
influence contributes to variability in one’s allocation of atten-
tional resources toward potential threats. Specifically, we
found the Met allele carriers have greater levels of uncinate
fasciculus FA and AD. In animal models, FA is an indicator of
fiber integrity and degree of myelination (Le Bihan 2003),
while AD is thought to measure axonal integrity (Song et al.
2003). Thus, if these models apply to the human brain, our
results may suggest that the BDNF gene influences the mech-
anisms regulating the degree of myelination, axonal integrity,
and general fiber integrity of the uncinate fasciculus, which
ultimately contributes to variability in nonconscious attention
bias across individuals.

Although BDNF is known to affect synaptic plasticity, it is
still unclear how the BDNF Val66Met polymorphism influ-
ences white matter integrity in the human brain, and the
neuroimaging literature in this area has produced conflicting
results. For example, in one study, there was no association
between the BDNF Val66Met polymorphism and white
matter integrity (Montag, Schoene-Bake et al. 2010), while in
other research, the Met-BDNF genetic variant was linked to
greater fiber integrity (e.g., increase FA or decreased radial
diffusivity) in various major fibers, such as the cingulum
bundle, inferior longitudinal fasciculus, inferior fronto-occi-
pital fasciculus and uncinate fasciculus (Chiang et al. 2011;
Voineskos et al. 2011; Tost et al. 2013). It should be noted
that the majority of the fiber integrity research on the BDNF
Val66Met polymorphism used voxelwise approaches (except
for Voineskos et al. 2011). While statistically stringent and
suitable for exploratory analyses, this method may over look
smaller, yet meaningful, effects. On the other hand, the
present study focused on the global integrity of an a priori
white matter pathway and revealed a localized effect of the
BDNF Val66Met polymorphism on uncinate fasciculus FA
and AD. Thus, future hypothesis-driven research may benefit
from similarly focused analyses. We should note that our
sample was of mixed ethnicity (see Materials and Methods
section for details). Although ethnicity was not associated
with attentional bias to threat or uncinate fasciculus integrity
in our sample and prior work has shown that ethnicity does
not impact the relationship between BDNF and depression
(Verhagen et al. 2010), future research should directly assess
the effects of ethnicity on uncinate fasciculus integrity in a
larger sample. Nevertheless, our results suggest that the
BDNF genotype influences uncinate fasciculus fiber integrity,
which is in turn linked to facilitated attention to noncon-
scious threat.

In conclusion, our results link individual differences in
amygdalo-prefrontal white matter integrity to nonconscious
attention bias to threat and the BDNF genotype. These results
provide evidence for the notion that some individuals may be
“hard-wired” to focus on the negative side of life.
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Supplementary material can be found at: http://www.cercor.oxford
journals.org/.
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